$$
\begin{gathered}
\text { NUMERICAL ANALYSIS } \\
\text { Assignment - } 4 \text { (week 4) } \\
\text { Total Marks - } 25 \\
\text { Posted on }-14 / 8 / 2017 \text { (Monday); }
\end{gathered}
$$

To be submitted on or before-23/8/2017 (Wednesday), 23.59 hours.

Problems on

- Trapezoidal Rule
- Simpson's Rule
- Method of undetermined coefficients
- Gauss quadrature Two-point Method

INSTRUCTIONS

- This is a question paper cum answer booklet.
- Take a print out of this.
- Present the details of the computations of the solution of each problem which you will have to show in the space provided at the bottom of the page.
- Fill in the answers in the space provided below each question.
- Scan the booklet and submit it as a pdf file before the deadline for evaluation.

1. Approximate the intgral $I=\int_{e}^{e+1} \frac{d x}{x \ln x}$ using the Trapezoidal rule and fill in the blank:

$$
I=\int_{e}^{e+1} \frac{d x}{x \ln x} \simeq
$$.

Show your work for the solution of problem 1 in the space provided below.
2. Choose the correct answer.

The Trapezoidal rule applied to $\int_{0}^{2} f(x) d x$ gives the value 4 and the Simpson's rule gives the value 2 .
Then $f(1)=$ \qquad . (3 marks)

Show your work for the solution of problem 2 in the space provided below.
3. Estimate $\int_{0}^{\pi} x^{2} \cos x d x$ using 6 subintervals with composite Simpson's rule and fill in the blank: $\int_{0}^{\pi} x^{2} \cos x d x \simeq$ \qquad .

Show your work for the solution of problem 3 in the space provided below.
4. In approximating the integral $\int_{0}^{\pi} \sin x d x$ using Simpson's rule, how many subintervals are needed to ensure that the error in Simpson's rule approximation is less than 10^{-6} ?

Fill in the blank:

The number ' n ' of subintervals required to ensure the desired accuracy is \qquad .

Show your work for the solution of problem 4 in the space provided below.
5. Determine the value of the step-size ' h ' necessary to find an approximation to $\int_{0}^{2} \sin 3 x d x$ to within 10^{-2} using the composite Simpson's rule and fill in the blank: the step-size ' h ' required to obtain the desired accuracy is \qquad . (4 marks)

Show your work for the solution of problem 5 in the space provided below.
6. Find a quadrature of the form $\int_{0}^{1} f(x) d x \simeq A_{0} f(0)+A_{1} f\left(\frac{1}{2}\right)+A_{2} f(1)$ \qquad
that is exact for all polynomials of degree ≤ 2. What is the degree of precision of $(*)$? and fill in the blanks:
(a) $A_{0}=$ \qquad ; (b) $A_{1}=$ \qquad ;
(c) $A_{2}=$ \qquad ;
(d) the degree of precision of $(*)$ is \qquad . (8 marks)

Show your work for the solution of problem 6 in the space provided below.

